68 research outputs found

    Reduced Levels of Membrane-Bound Alkaline Phosphatase Are Common to Lepidopteran Strains Resistant to Cry Toxins from Bacillus thuringiensis

    Get PDF
    Development of insect resistance is one of the main concerns with the use of transgenic crops expressing Cry toxins from the bacterium Bacillus thuringiensis. Identification of biomarkers would assist in the development of sensitive DNA-based methods to monitor evolution of resistance to Bt toxins in natural populations. We report on the proteomic and genomic detection of reduced levels of midgut membrane-bound alkaline phosphatase (mALP) as a common feature in strains of Cry-resistant Heliothis virescens, Helicoverpa armigera and Spodoptera frugiperda when compared to susceptible larvae. Reduced levels of H. virescens mALP protein (HvmALP) were detected by two dimensional differential in-gel electrophoresis (2D-DIGE) analysis in Cry-resistant compared to susceptible larvae, further supported by alkaline phosphatase activity assays and Western blotting. Through quantitative real-time polymerase chain reaction (qRT-PCR) we demonstrate that the reduction in HvmALP protein levels in resistant larvae are the result of reduced transcript amounts. Similar reductions in ALP activity and mALP transcript levels were also detected for a Cry1Ac-resistant strain of H. armigera and field-derived strains of S. frugiperda resistant to Cry1Fa. Considering the unique resistance and cross-resistance phenotypes of the insect strains used in this work, our data suggest that reduced mALP expression should be targeted for development of effective biomarkers for resistance to Cry toxins in lepidopteran pests

    Fitness Cost of Resistance to Bt Cotton Linked with Increased Gossypol Content in Pink Bollworm Larvae

    Get PDF
    Fitness costs of resistance to Bacillus thuringiensis (Bt) crops occur in the absence of Bt toxins, when individuals with resistance alleles are less fit than individuals without resistance alleles. As costs of Bt resistance are common, refuges of non-Bt host plants can delay resistance not only by providing susceptible individuals to mate with resistant individuals, but also by selecting against resistance. Because costs typically vary across host plants, refuges with host plants that magnify costs or make them less recessive could enhance resistance management. Limited understanding of the physiological mechanisms causing fitness costs, however, hampers attempts to increase costs. In several major cotton pests including pink bollworm (Pectinophora gossypiella), resistance to Cry1Ac cotton is associated with mutations altering cadherin proteins that bind this toxin in susceptible larvae. Here we report that the concentration of gossypol, a cotton defensive chemical, was higher in pink bollworm larvae with cadherin resistance alleles than in larvae lacking such alleles. Adding gossypol to the larval diet decreased larval weight and survival, and increased the fitness cost affecting larval growth, but not survival. Across cadherin genotypes, the cost affecting larval growth increased as the gossypol concentration of larvae increased. These results suggest that increased accumulation of plant defensive chemicals may contribute to fitness costs associated with resistance to Bt toxins

    Resistance of Trichoplusia ni to Bacillus thuringiensis Toxin Cry1Ac Is Independent of Alteration of the Cadherin-Like Receptor for Cry Toxins

    Get PDF
    Alteration of binding sites for Bacillus thuringiensis (Bt) toxins in insect midgut is the major mechanism of high-level resistance to Bt toxins in insects. The midgut cadherin is known to be a major binding protein for Bt Cry1A toxins and linkage of Bt-resistance to cadherin gene mutations has been identified in lepidopterans. The resistance to Bt toxin Cry1Ac evolved in greenhouse populations of Trichoplusia ni has been identified to be associated with the down-regulation of an aminopeptidase N (APN1) gene by a trans-regulatory mechanism and the resistance gene has been mapped to the locus of an ABC transporter (ABCC2) gene. However, whether cadherin is also involved with Cry1Ac-resistance in T. ni requires to be understood. Here we report that the Cry1Ac-resistance in T. ni is independent of alteration of the cadherin. The T. ni cadherin cDNA was cloned and the cadherin sequence showed characteristic features known to cadherins from Lepidoptera. Various T. ni cadherin gene alleles were identified and genetic linkage analysis of the cadherin alleles with Cry1Ac-resistance showed no association of the cadherin gene with the Cry1Ac-resistance in T. ni. Analysis of cadherin transcripts showed no quantitative difference between the susceptible and Cry1Ac-resistant T. ni larvae. Quantitative proteomic analysis of midgut BBMV proteins by iTRAQ-2D-LC-MS/MS determined that there was no quantitative difference in cadherin content between the susceptible and the resistant larvae and the cadherin only accounted for 0.0014% (mol%) of the midgut BBMV proteins, which is 1/300 of APN1 in molar ratio. The cadherin from both the susceptible and resistant larvae showed as a 200-kDa Cry1Ac-binding protein by toxin overlay binding analysis, and nano-LC-MS/MS analysis of the 200-kDa cadherin determined that there is no quantitative difference between the susceptible and resistant larvae. Results from this study indicate that the Cry1Ac-resistance in T. ni is independent of cadherin alteration

    Identification of a Novel Aminopeptidase P-Like Gene (OnAPP) Possibly Involved in Bt Toxicity and Resistance in a Major Corn Pest (Ostrinia nubilalis)

    Get PDF
    Studies to understand the Bacillus thuringiensis (Bt) resistance mechanism in European corn borer (ECB, Ostrinia nubilalis) suggest that resistance may be due to changes in the midgut-specific Bt toxin receptor. In this study, we identified 10 aminopeptidase-like genes, which have previously been identified as putative Bt toxin receptors in other insects and examined their expression in relation to Cry1Ab toxicity and resistance. Expression analysis for the 10 aminopeptidase-like genes revealed that most of these genes were expressed predominantly in the larval midgut, but there was no difference in the expression of these genes in Cry1Ab resistant and susceptible strains. This suggested that altered expression of these genes was unlikely to be responsible for resistance in these ECB strains. However, we found that there were changes in two amino acid residues of the aminopeptidase-P like gene (OnAPP) involving Glu305 to Lys305 and Arg307 to Leu307 in the two Cry1Ab-resistant strains as compared with three Cry1Ab-susceptible strains. The mature OnAPP contains 682 amino acid residues and has a putative signal peptide at the N-terminus, a predicted glycosylphosphatidyl-inositol (GPI)-anchor signal at the C-terminal, three predicted N-glycosylation sites at residues N178, N278 and N417, and an O-glycosylation site at residue T653. We used a feeding based-RNA interference assay to examine the role of the OnAPP gene in Cry1Ab toxicity and resistance. Bioassays of Cry1Ab in larvae fed diet containing OnAPP dsRNA resulted in a 38% reduction in the transcript level of OnAPP and a 25% reduction in the susceptibility to Cry1Ab as compared with larvae fed GFP dsRNA or water. These results strongly suggest that the OnAPP gene could be involved in binding the Cry1Ab toxin in the ECB larval midgut and that mutations in this gene may be associated with Bt resistance in these two ECB strains

    Mis-Spliced Transcripts of Nicotinic Acetylcholine Receptor α6 Are Associated with Field Evolved Spinosad Resistance in Plutella xylostella (L.)

    Get PDF
    The evolution of insecticide resistance is a global constraint to agricultural production. Spinosad is a new, low-environmental-risk insecticide that primarily targets nicotinic acetylcholine receptors (nAChR) and is effective against a wide range of pest species. However, after only a few years of application, field evolved resistance emerged in the diamondback moth, Plutella xylostella, an important pest of brassica crops worldwide. Spinosad resistance in a Hawaiian population results from a single incompletely recessive and autosomal gene, and here we use AFLP linkage mapping to identify the chromosome controlling resistance in a backcross family. Recombinational mapping with more than 700 backcross progeny positioned a putative spinosad target, nAChR alpha 6 (Pxα6), at the resistance locus, PxSpinR. A mutation within the ninth intron splice junction of Pxα6 results in mis-splicing of transcripts, which produce a predicted protein truncated between the third and fourth transmembrane domains. Additional resistance-associated Pxα6 transcripts that excluded the mutation containing exon were detected, and these were also predicted to produce truncated proteins. Identification of the locus of resistance in this important crop pest will facilitate field monitoring of the spread of resistance and offer insights into the genetic basis of spinosad resistance in other species

    Gene Amplification, ABC Transporters and Cytochrome P450s: Unraveling the Molecular Basis of Pyrethroid Resistance in the Dengue Vector, Aedes aegypti

    Get PDF
    Dengue is the most rapidly spreading arboviral infection of humans and each year there are 50–100 million cases of dengue fever. There is no vaccine or drug to prevent dengue infection so control of the mosquitoes that transmit this virus is the only option to reduce transmission. Removing mosquito habitats close to human homes can be effective but in reality most dengue control programmes rely on a small number of chemical insecticides. Therefore, when the mosquito vectors develop resistance to the available insecticides, dengue control is jeopardized. In this study we examined the causes of resistance to the insecticide class most commonly used in mosquito control, the pyrethroids. We found that a group of genes, which have been implicated in detoxifying these insecticides in other populations of dengue vectors, were highly over expressed in both these Caribbean populations and we investigated the molecular basis of this increased expression. The next steps, which will be a considerable challenge, are to utilize this information to develop effective means of restoring insecticide susceptibility in dengue vectors

    A Strategy for the Proliferation of Ulva prolifera, Main Causative Species of Green Tides, with Formation of Sporangia by Fragmentation

    Get PDF
    Ulva prolifera, a common green seaweed, is one of the causative species of green tides that occurred frequently along the shores of Qingdao in 2008 and had detrimental effects on the preparations for the 2008 Beijing Olympic Games sailing competition, since more than 30 percent of the area of the games was invaded. In view of the rapid accumulation of the vast biomass of floating U. prolifera in green tides, we investigated the formation of sporangia in disks of different diameters excised from U. prolifera, changes of the photosynthetic properties of cells during sporangia formation, and development of spores. The results suggested that disks less than 1.00 mm in diameter were optimal for the formation of sporangia, but there was a small amount of spore release in these. The highest percentage of area of spore release occurred in disks that were 2.50 mm in diameter. In contrast, sporangia were formed only at the cut edges of larger disks (3.00 mm, 3.50 mm, and 4.00 mm in diameter). Additionally, the majority of spores liberated from the disks appeared vigorous and developed successfully into new individuals. These results implied that fragments of the appropriate size from the U. prolifera thalli broken by a variety of factors via producing spores gave rise to the rapid proliferation of the seaweed under field conditions, which may be one of the most important factors to the rapid accumulation of the vast biomass of U. prolifera in the green tide that occurred in Qingdao, 2008

    Exploring the Midgut Transcriptome and Brush Border Membrane Vesicle Proteome of the Rice Stem Borer, Chilo suppressalis (Walker)

    Get PDF
    The rice stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), is one of the most detrimental pests affecting rice crops. The use of Bacillus thuringiensis (Bt) toxins has been explored as a means to control this pest, but the potential for C. suppressalis to develop resistance to Bt toxins makes this approach problematic. Few C. suppressalis gene sequences are known, which makes in-depth study of gene function difficult. Herein, we sequenced the midgut transcriptome of the rice stem borer. In total, 37,040 contigs were obtained, with a mean size of 497 bp. As expected, the transcripts of C. suppressalis shared high similarity with arthropod genes. Gene ontology and KEGG analysis were used to classify the gene functions in C. suppressalis. Using the midgut transcriptome data, we conducted a proteome analysis to identify proteins expressed abundantly in the brush border membrane vesicles (BBMV). Of the 100 top abundant proteins that were excised and subjected to mass spectrometry analysis, 74 share high similarity with known proteins. Among these proteins, Western blot analysis showed that Aminopeptidase N and EH domain-containing protein have the binding activities with Bt-toxin Cry1Ac. These data provide invaluable information about the gene sequences of C. suppressalis and the proteins that bind with Cry1Ac

    Binding Site Alteration Is Responsible for Field-Isolated Resistance to Bacillus thuringiensis Cry2A Insecticidal Proteins in Two Helicoverpa Species

    Get PDF
    Background Evolution of resistance by target pests is the main threat to the long-term efficacy of crops expressing Bacillus thuringiensis (Bt) insecticidal proteins. Cry2 proteins play a pivotal role in current Bt spray formulations and transgenic crops and they complement Cry1A proteins because of their different mode of action. Their presence is critical in the control of those lepidopteran species, such as Helicoverpa spp., which are not highly susceptible to Cry1A proteins. In Australia, a transgenic variety of cotton expressing Cry1Ac and Cry2Ab (Bollgard II) comprises at least 80% of the total cotton area. Prior to the widespread adoption of Bollgard II, the frequency of alleles conferring resistance to Cry2Ab in field populations of Helicoverpa armigera and Helicoverpa punctigera was significantly higher than anticipated. Colonies established from survivors of F2 screens against Cry2Ab are highly resistant to this toxin, but susceptible to Cry1Ac. Methodology/Principal Findings Bioassays performed with surface-treated artificial diet on neonates of H. armigera and H. punctigera showed that Cry2Ab resistant insects were cross-resistant to Cry2Ae while susceptible to Cry1Ab. Binding analyses with 125I-labeled Cry2Ab were performed with brush border membrane vesicles from midguts of Cry2Ab susceptible and resistant insects. The results of the binding analyses correlated with bioassay data and demonstrated that resistant insects exhibited greatly reduced binding of Cry2Ab toxin to midgut receptors, whereas no change in 125I-labeled-Cry1Ac binding was detected. As previously demonstrated for H. armigera, Cry2Ab binding sites in H. punctigera were shown to be shared by Cry2Ae, which explains why an alteration of the shared binding site would lead to cross-resistance between the two Cry2A toxins. Conclusion/Significance This is the first time that a mechanism of resistance to the Cry2 class of insecticidal proteins has been reported. Because we found the same mechanism of resistance in multiple strains representing several field populations, we conclude that target site alteration is the most likely means that field populations evolve resistance to Cry2 proteins in Helicoverpa spp. Our work also confirms the presence in the insect midgut of specific binding sites for this class of proteins. Characterizing the Cry2 receptors and their mutations that enable resistance could lead to the development of molecular tools to monitor resistance in the [email protected]; [email protected]

    Transcriptional responses underlying the hormetic and detrimental effects of the plant secondary metabolite gossypol on the generalist herbivore Helicoverpa armigera

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hormesis is a biphasic biological response characterized by the stimulatory effect at relatively low amounts of chemical compounds which are otherwise detrimental at higher concentrations. A hormetic response in larval growth rates has been observed in cotton-feeding insects in response to increasing concentrations of gossypol, a toxic metabolite found in the pigment glands of some plants in the family Malvaceae. We investigated the developmental effect of gossypol in the cotton bollworm, <it>Helicoverpa armigera</it>, an important heliothine pest species, by exposing larvae to different doses of this metabolite in their diet. In addition, we sought to determine the underlying transcriptional responses to different gossypol doses.</p> <p>Results</p> <p>Larval weight gain, pupal weight and larval development time were measured in feeding experiments and a hormetic response was seen for the first two characters. On the basis of net larval weight gain responses to gossypol, three concentrations (0%, 0.016% and 0.16%) were selected for transcript profiling in the gut and the rest of the body in a two-color double reference design microarray experiment. Hormesis could be observed at the transcript level, since at the low gossypol dose, genes involved in energy acquisition such as β-fructofuranosidases were up-regulated in the gut, and genes involved in cell adhesion were down-regulated in the body. Genes with products predicted to be integral to the membrane or associated with the proteasome core complex were significantly affected by the detrimental dose treatment in the body. Oxidoreductase activity-related genes were observed to be significantly altered in both tissues at the highest gossypol dose.</p> <p>Conclusions</p> <p>This study represents the first transcriptional profiling approach investigating the effects of different concentrations of gossypol in a lepidopteran species. <it>H. armigera</it>'s transcriptional response to gossypol feeding is tissue- and dose-dependent and involves diverse detoxifying mechanisms not only to alleviate direct effects of gossypol but also indirect damage such as pH disturbance and oxygen radical formation. Genes discovered through this transcriptional approach may be additional candidates for understanding gossypol detoxification and coping with gossypol-induced stress. In a generalist herbivore that has evolved transcriptionally-regulated responses to a variety of different plant compounds, hormesis may be due to a lower induction threshold of growth-promoting, stress-coping responses and a higher induction threshold of detoxification pathways that are costly and cause collateral damage to the cell.</p
    corecore